Dynamical group approach to the exponential cosine screened Coulomb potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L849
(http://iopscience.iop.org/0305-4470/18/14/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:01

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Dynamical group approach to the exponential cosine screened Coulomb potential

H de Meyer \dagger, V Fack and G Vanden Berghe
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-S9, B9000 Gent, Belgium

Received 15 July 1985

Abstract

The bound state energies of the screened Coulomb potential - $\exp (-\lambda r) \cos (\mu r) / r$ can be approximated on account of a scaling variational principle and in such a way that no expansion in the screening parameters is required.

The exponential cosine screened Coulomb (ECSC) potential $V(r)=$ $-\exp (-\lambda r) \cos (\lambda r) / r$, frequently encountered in solid state physics, has received much attention in recent years. The bound state energies of the ECSC potential have been studied using a variety of approximate methods, both numerical (Bonch-Bruevich and Glasko 1959, Singh and Varshni 1983) and analytical (Lam and Varshni 1972, Lai 1982, Dutt et al 1985). A non-perturbative dynamical group approach to screened Coulomb potentials has been formulated by Gerry and Laub (1984), whereas its application to the ECSC potential has been treated very recently by Roy and Choudhury (1985). More precisely, these authors have introduced two kinds of approximations. The first consists in a truncation of the series development of the potential in powers of λ; the second is inherent to the scaling variational method and consists in neglecting off-diagonal matrix elements of the transformed Hamiltonian. In the present letter we want to insist upon the fact that the former kind of approximation can be easily avoided. Moreover, we consider the extended ecsc potential

$$
\begin{equation*}
V(r)=-r^{-1} \mathrm{e}^{-\lambda r} \cos (\mu r) \quad \lambda, \mu>0 \tag{1}
\end{equation*}
$$

to which we associate the energy functional $\Omega(E)$, defined by

$$
\begin{equation*}
\Omega(E)=r(\hat{H}-E)=r\left(\frac{1}{2} p^{2}+V(r)-E\right) . \tag{2}
\end{equation*}
$$

The $\mathrm{SO}(2,1)$ Lie algebra is realised as follows (Bednar 1973)

$$
\begin{equation*}
K_{1}=\frac{1}{2}\left(r p^{2}-r\right) \quad K_{2}=r \cdot p-i \quad K_{3}=\frac{1}{2}\left(r p^{2}+r\right) . \tag{3}
\end{equation*}
$$

Introducing the operators $K_{ \pm}=K_{1} \pm \mathrm{i} K_{2}$, the Hermitian representation is defined by

$$
\begin{align*}
& K_{3}|l m n\rangle=n|l m n\rangle, \\
& K_{ \pm}|m n\rangle=[(l+1 \pm n)(\pm n-l)]^{1 / 2}|l m n \pm 1\rangle, \\
& \left(K_{3}^{2}-K_{1}^{2}-K_{2}^{2}\right)|l m n\rangle=l(l+1)|l m n\rangle \tag{4}
\end{align*}
$$

\dagger Senior Associate at the National Scientific Research Fund (Belgium).
where $n=n_{\mathrm{r}}+l+1, n_{\mathrm{r}}$ being the radial quantum number and l being the orbital angular momentum.

We now re-express the functional $\Omega(E)$ in terms of the generators K_{1} and K_{3} after which we carry out a tilting transformation $\Omega(E) \rightarrow \bar{\Omega}(E, \theta)=$ $\exp \left(-\mathrm{i} \theta K_{2}\right) \Omega(E) \exp \left(\mathrm{i} \theta K_{2}\right)$. On account of the property

$$
\begin{equation*}
\exp \left(-\mathrm{i} \theta K_{2}\right)\left(K_{3} \pm K_{1}\right) \exp \left(\mathrm{i} \theta K_{2}\right)=\mathrm{e}^{ \pm \theta}\left(K_{3} \pm K_{1}\right) \tag{5}
\end{equation*}
$$

we obtain
$\bar{\Omega}(E, \theta)=\frac{1}{2} \mathrm{e}^{\theta}\left(K_{3}+K_{1}\right)-E \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)-\operatorname{Re}\left\{\exp \left[-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]\right\}$.
The scaling variational method consists in setting the diagonal element ($\operatorname{lmn}|\Omega(E, \theta)| l m n\rangle$ equal to zero and solving the resulting equation with respect to E which now becomes a function $E(\theta)$ of the tilting parameter θ. The minimum attained by this function provides us with an approximation of the energy level $E_{n, l}$.

The matrix elements of the functional $\bar{\Omega}(E, \theta)$ can all be calculated in analytical closed form. Indeed, the matrix elements of the first two terms in the expression (6) follow immediately from the application of the properties (4), whereas the matrix elements of the remaining term can be expressed each in terms of a Bargmann function (Bargmann 1947). One has

$$
\begin{aligned}
\left\langle l m n^{\prime}\right| \exp [& \left.-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]|l m n\rangle \\
& =\langle l m n| \exp \left[-(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]\left|l m n^{\prime}\right\rangle
\end{aligned}
$$

and

$$
\begin{align*}
\left\langle l m n^{\prime}\right| \exp [- & \left.(\lambda+\mathrm{i} \mu) \mathrm{e}^{-\theta}\left(K_{3}-K_{1}\right)\right]|l m n\rangle \\
= & \frac{1}{\Gamma\left(1+n^{\prime}-n\right)}\left(\frac{\Gamma\left(n^{\prime}-l\right) \Gamma\left(n^{\prime}+l+1\right)}{\Gamma(n-l) \Gamma(n+l+1)}\right)^{1 / 2}\left(1+\frac{\lambda+\mathrm{i} \mu}{2} \mathrm{e}^{-\theta}\right)^{-n^{\prime}-n} \\
& \times\left(\frac{\lambda+\mathrm{i} \mu}{2} \mathrm{e}^{-\theta}\right)^{n^{\prime}-n}{ }_{2} F_{1}\left(l+1-n,-n-l, 1+n^{\prime}-n ; \frac{1}{4}(\lambda+\mathrm{i} \mu)^{2} \mathrm{e}^{-2 \theta}\right), \\
& n^{\prime} \geqslant n \tag{7}
\end{align*}
$$

all other matrix elements being zero.
Hence, it is straightforward to obtain an approximation to the energy levels $E_{n, l}$ by minimising the energy function:

$$
\begin{equation*}
E_{n, l}(\theta)=\frac{1}{2} \mathrm{e}^{2 \theta}-\frac{\mathrm{e}^{\theta}}{n} \operatorname{Re}\left[\left(1+\frac{\lambda+\mathrm{i} \mu}{2} \mathrm{e}^{-\theta}\right)^{-2 n}{ }_{2} F_{1}\left(l+1-n,-l-n, 1 ; \frac{1}{4}(\lambda+\mathrm{i} \mu)^{2} \mathrm{e}^{-2 \theta}\right)\right] \tag{8}
\end{equation*}
$$

with respect to θ. In table 1 we list the results obtained by minimising $E_{n, l}(\theta)$ for $1 \leqslant n \leqslant 4, l=0,1, \ldots, n-1$ and for the ECsc potential whereby $\mu=\lambda$ assumes certain typical values. Although we present only eight significant figures, the calculations have nevertheless been carried out in double precision by means of a FORTRAN 77 program. Our results closely resemble the ones of Roy and Choudhury (1985), especially when λ is very small. In fact, one can verify that on expanding the rhs of (8) in powers of $\lambda=\mu$ one recovers as first terms the truncated series development mentioned in their paper.

Table 1. Energy eigenvalues in atomic units for different values of the screening parameter λ of the ECSC potential

	$\lambda=\mu$				
$(n l)$	0.01	0.02	0.03	0.04	0.05
10	-0.4900010	-0.4800078	-0.4700260	-0.4600609	-0.4501174
20	-0.1150135	-0.1051036	-0.0953366	-0.0857690	-0.0764497
21	-0.1150097	-0.1050746	-0.0952434	-0.0855583	-0.0760561
30	-0.0456191	-0.0360256	-0.0270334	-0.0188478	-0.0116627
31	-0.0456110	-0.0359677	-0.0268553	-0.0184580	-0.0109474
32	-0.0455948	-0.0358503	-0.0264933	-0.0176648	-0.0094954
40	-0.0214377	-0.0125811	-0.0053597	-0.0010694	-0.0007249
41	-0.0214245	-0.0124915	-0.0050887	-0.0004074	-0.0000268
42	-0.0213980	-0.0123105	-0.0045424		
43	-0.0213578	-0.0120347	-0.0037143		

	$\lambda=\mu$			
$(n l)$	0.06	0.08	0.1	0.2
10	-0.4402004	-0.4204636	-0.4008839	-0.3062964
20	-0.0674217	-0.0503922	-0.0349677	-0.0023467
21	-0.0667697	-0.0489610	-0.0323498	
30	-0.0057194	-0.0014821	-0.0008951	
31	-0.0045278			
32	-0.0021307			
40	-0.0004700			

Finally, it should be remarked that since the off-diagonal matrix elements of $\bar{\Omega}(E, \theta)$ can also be expressed in closed form, we could treat them as perturbation terms and perform an algebraical perturbation expansion. Then the tilting parameter θ can be utilised to increase as much as possible the rate of convergence of that expansion. Such an iterative perturbational scheme has been established already by us (Fack et al 1985) for the $\lambda x^{2} /\left(1+g x^{2}\right)$ potential. We hope to report soon on a similar treatment for the ECSC potential.

References

[^0]
[^0]: Bargmann V 1947 Ann. Math. 48568
 Bednar M 1973 Ann. Phys., NY 75305
 Bonch-Bruevich V L and Glasko V B 1959 Sov. Phys.-Dokl. 18147
 Dutt R, Chowdhury K and Varshni Y P 1985 J. Phys. A: Math. Gen. 181379
 Fack V, De Meyer H and Vanden Berghe G 1985 J. Math. Phys. to be published
 Gerry C and Laub J 1984 Phys. Rev. A 301229
 Lai C S 1982 Phys. Rev. A 262245
 Lam C S and Varshni Y P 1972 Phys. Rev. A 61391
 Roy B and Choudhury R R 1985 Z. Naturf. 40a 453
 Singh D and Varshni Y P 1983 Phys. Rev. A 282606

